### Abstract

‘Vector spaces’ discusses the algebra of vector spaces, which are abelian groups with an additional scalar multiplication by a field. Every finite abelian group is the direct product of cyclic groups. Any finite abelian group can be represented in one of two special ways based on numerical relationships between the subscripts of the cyclic groups involved. In one representation, all the subscripts are powers of primes; in the alternative, each subscript is a divisor of its successor. It concludes by bringing together the ideas of modular arithmetic, the construction of the complex numbers, factorization of polynomials, and vector spaces to explain the existence of finite fields.