Show Summary Details

p. 1119. Determinants and matriceslocked

  • Peter M. Higgins

Abstract

‘Determinants and matrices’ explains that in three dimensions, the absolute value of the determinant det(A) of a linear transformation represented by the matrix A is the multiplier of volume. The columns of A are the images of the position vectors of the sides of the unit cube and they define a three-dimensional version of a parallelogram, a parallelepiped, the volume of which is |det(A)|. It goes on to describe the properties and applications of determinants to networks (using the Kirchhoff matrix); Cramer’s Rule; eigenvalues; and eigenvectors, which are fundamental in linear mathematics. Other key topics in matrix theory—similarity, diagonalization, and factorization of matrices—are also discussed.

Access to the complete content on Very Short Introductions online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can't find the answer there, please contact us.